UNCLASSIFIED

., 426876

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED




NOTICE: When govermnment or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S.
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formulated, furnished, or in any way
supplied the said drawings, specifications, or other
data is not to be regarded by implication or other-
wise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto.




C¢-¢

D1-82-0307

7/ i ,--"" . / P / l—r
/7/,;(? s7e zﬁ//é/f'é/ P /7:; ‘7"//0/

BOEINGHS::

Sl
CH
TORIES

An Approach to Nonlinear Networks

Bernard Friedman

Mathematics Research -

September 1963

N




D1-82-0307

AN APPROACH TO NONLINEAR NETWORKS

by

Professor Bernard Friedman
University of Califormia, Berkeley

Mathematical Note No. 325
Mathematics Research Laboratory
BOEING SCIENTIFIC RESEARCH LABORATORIES

September 1963




Chapter I Extericr Algebra
Introduction

This report will bring together several mathematical topies which
seem to be relevant to the treatment of nonlinear networks. The main
goal will be to discuss some stability theorems recently obtained by
Brayton and Moser [1]. Before reaching this goal, we shall present
some exterior, or Grassman algebra, some algebraic topology, some
theorems about electrical networks, and a few remarks about Liapunov
stability. Of course, the final results could be obtained more directly
without the excursions into exterior algebra or algebraic topology.
However, since these topics do give some additional insight, it was
thought worthwhile to include them. Because there are many places
where a rigorous and more complete treatment may be found, the approach
throughout has been intentionally kept to a verv elementary and a very

intuitive level.
Linear Spaces

We shall begin with a discussion of the algebra of three-dimensional
vectors., Mathematicians have learned that it is more important to know
how things behave, than to know what they are. One well-known fact
about the behavior of vectors is that they can be added, that is, two
vectors a and b can be combined to form a third vector which is
called their sum and which is written a + b. The operation by which the
sum is formed has the following properties:

1. The associative property, that is, a + (b +¢c) = (a + b) + c;




2. a neutral element, written O, exists such that for all

vectors a, we have a +0 =0 + a = a;

Zig every vector a has an inverse element -~ a such that

a+ (-a) =(-a) +a=0;

be the commutative property, that is, a + b = b + a.

These properties are evident from the geometrical definition of

addition by the Parallelogram Law which is illustrated in Figure 1.

a

Figure 1

Any set of elements for which an operation such as + can be carried

out, and for which the properties 1,2,3, are satisfied is called a

group. If Property 4 is also satisfied, the group is said to be com-

mitative.

Besides addition, there is another operation possible with vectors,

namely multiplication with a scalar. Let us denote scalars by Greek

letters; then the operation of multiplying by a scalar has the following

properties:
Bq a(a + b) = aa + ab; 6. (a + B)a = aa + pa;

o a(pa) = (ap)a; 8., 1la = a.




Any set of elements for which an operation having the properties
1,2,3, and 4 can be defined, and for which an operation having the
properties 5,6,7, and 8 can be defined is called a linear space, or a
linear vector space. The elements 8585500058, in a linear space are

sald to be linearly independent if a relation such as

a.8, + a8, +eeet+ a8 0
nn

171 272

implies that ay = a, = eee = a

are not linearly independent, they are sald tn be linearly dependent.

0. If the elements 815855008,

The geometrical significance of linear independence is clear. One
vector is linearly independent if, and only if, it is not the zero vector.
Two vectors are linearly independent if, and only if, they do not lie in
the same line. Three vectors are linearly independent if, and only if,

they do not lie in the same plane.

The vectors +eya ~are said to form a basis of the linear

)85,
space if every element of the space can be expressed uniquely as a linear

combination of the basis, that is, given any element x in the linear

space, there exists a unique s¢t of scalars YRR such that

= qia, + a8, +eeet .
S s B 1) P

The number of vectors in the basis 1s called the dimension of the space.
The space of geometry and physics obviously has dimension three because
every vector can be expressed uniquely as a linear combination of the

T
fundamental 1i,j,k vectors.




Bivectors

Besides the operations of addition and of multiplying by a scalar,
there are other vector operations possible, namely the operations of
multiplying two vectors together to obtain the dot product and the cross
product. In this section we shall introduce a third type of product,

the exterior or wedge product. The wedge product is very closely related

to the vector product in a three-dimensional space. However, in higher
dimensional spaces, the vector product does not exist but the wedge product
always exists. Also, the wedge product has the associative property

which the vectcr product does not.

We shall introduce the wedge product geometrically. A vector has
the geometrical significance of a directed line segment which has a magnitude,
its length, and a direction. Consider a parallelogram (see Figure 2) having

the vectors a and b as sides. This parallelogram has a magnitude,

its area, but we shall see that it is useful to assign to the parallelo-
gram also an orientation, that is, a sense or direction in which the sides

are traversed. To see the need for an orientation, consider a triangle




(see Figure 3) whose area we shall denote by ABC. Let 0O be a point

Figure 3

inside the triangle, then

_ (1)
C = 0AB + OBC + OCE.

However, if the point O 1is outside the triangle as in Figure 4,

Figure 4

then the equation (1) is no longer true. Instead, we have

ABC = OAB - 0OBC + OCL. (2)

It would certainly be convenient to be able tc use egquation (1) no
matter where 0 1s placed. This can be done if we agree that an area
is to be considered positive or negative according as its vertices are
described in a counter-clockwise or a clockwise order. For example,
ABC will denote the positive number equal to the magnitude of the area
of the triangle in Figure 3 or Figure 4, whereas ACB will denote the
negative number whose absolute value is equal to the megnitude of the

area of the triangle. With this interpretation, equation (1) is valid




for both Figures 3 and 4, because in Figure 3 OBC describes the triangle
in a counter-clockwise sense and thus OBC represents a positive number,
whereas in Figure 4 OBC describes the triangle in a clockwise sense

and thus OBC represents a negative number. Henceforth, we shall con-

sider all areas to be oriented.

Just as two vectors are considered equal if they have the same
length and are parallel in the same direction, so we shall consider two
parallelograms equal if they have equal areas, the same orientation, and
lie in the same or parallel planes. We shall say these parallelograms
represent a bivector. We shall denote by aAb a bivector such as the
one represented by the parallelogram in Figure 2, if the orientation of
the parallelogram is such that the vector a must be rotated in the
counter-clockwise sense to coincide with the vector b. However, if this
parallelogram is oriented in the clockwise sense, we denote the bivector
by baa. Because the only difference between the bivectors is in their
orientation or, what is equivalent, in the sign attached to the area, we

shall write
aAb = - baa. (3)

Thus, the multiplication indicated in the wedge product is anti-commtative
just as is the multiplication in the cross product. Notice that since
aAa = - ampa, we must have 2aAa = 0, or aAe = 0. We conclude that

the wedze product of a vector with itself is always zero.

It should be emphasized that a wedge product of two vectors is not

a vector but it is a bivector which is represented by a parallelogram




with a definite orientation. We can introduce a procedure for adding

two bivectors together. This addition procedure is indicated in Figure 5.

a+b

a
Figure 5

We find that this addition has the properties 1,2,3,4 of the preceding

section.

We can also define the operation of multiplying a bivector by a
scalar. The product of the bivector aab by the scalar a, written
gaab, is the bivector represented by a parallelogram whose area is
la] times the area of the parallelogram in Figure 2 representing aab,
whose orientation is the same or opposite to that in Figure 2 according
as a 1s greater or less than zero, and whose plane is the same or parallel
to that of Figure 2. It is easy to see that this operation of multiplying
a bivector by a scalar has properties 5,6,7,8 of the preceding section.
Consequently, the set of bivectors forms a linear space. We shall soon

show that this space is three-dimensional.

Let us illustrate the procedure for finding a wedge product by
considering a simple example. Juppose a = ali + a2j + u3k and

b= Bl + ByJ + Bgk, then

aab = a,B, iAj + a153 ink + a By JAl + @By JAk + a3ﬁ1 kAL + 3B, KA. (4)




Notice we have used the fact that the wedge product of a vector with
itself is zero. The result can be still further simplified by using the
anti-commitativity (3) of the product. We have jai = - iAj, kAl = - jAk,

iAk = - kAal, and therefore the product in (4) simplifies to

aAb = (a,B, - ayp;) 1iAj + (a253 = a3§32) nk + (aqp - GIBB) kai.  (5)

Since every vector can be written as a linear combination of 1,j, and
k, it is clear that every bivector will be a linear combination of the
three bivectors 1Aj, jak, and kAi. This shows that the space of bivectors

is three~dimensional.

The equation (5) suggests the connection between the wedge product
and the vector product. Notice that each of fhe fundamental bivectors
iAaj, jak, and kali, has a #nique normal, namely, the vectors k,i, and J,
respectively. If we replace each bivector in (5) by its normal, we get

the vector
(G2B3 - 0352)1 o (GBBl - alBB)J + (Q1B2 - azﬁl)k,
which is the vector product of a and b.

Determinants

The procedure for forming wedge productsvcan be extended to form the
wedge product of three vectors. This triple wedge product, which we call
a trivector, is represented geometrically by the oriented volume of the

parallelepiped generated by the three vectors (see Figure 6). The volume




is oriented by assigning an order in which the vectors a,b, and c¢ are

b
Figure &
described. If the order is such that the vectors form a right-handed
set, the volume is considered positive. If the vectors form a left-

handed set, the volume is considered negative.

Let us illustrate the procedure for forming the trivector by con-
sidering an example in which the vectors a and b are the vectors
used in (4) and the vector c = Yli + Y2j + Y3k' Using (5), we find

that
aAbac = YB(alﬁ2 = czﬁl) iAJAK + Yl(a253 = a352) JAkAL + Y2(°3B1 = alﬁB) kALiAj.

(6)
Because of (3), we see that kAiA] = - 1AkAj = iAjAk, and jAkAi = iAjAk,

therefore the result in (6) can be simplified to the following:
ambnc = [ry(aghs ~agb)t vy(azhy ~ aypy)+ vyleyBy - agby)] 1ajak.

The expression in the bracket is obviously the determinant of the
numbers which are the components of the vectors a,b, and c¢. This result
justifies the geometrical interpretation of the trivector as the volume

of the parallelepiped in Figure 6.
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A wedge product for any two vectors with n components can be

defined by a slight extension of the method used to define the wedge

product of two vectors in three—-dimensional space. For example, if

a = (2y3:‘ 1,5)9 b = (031:‘ 2,4)
are two 4-vectors, we first write them as :

a = 2e;, + 3e2 - e3 + 5e£, b=e, - 2e3 + Le

1 2 4

where el’e2’63’84 are the basic A-vectors defined by the equations

[¢]
|

= (1,0,0,0), € (0,1,0,0),

2

= (O’O,lio)’ € (O,O’O)l)' ﬁ

o
W
|

4

We then form the wedge product using the anti-commtativity rule (3) and

the fact that the wedge product of two identical vectors is zero. We get

anb = 2e Ae2 —Aell\e3 +8e1Ae

1 = 5e2/\e3+ '7e2/\e + 6e,Ae,.

4 4 374

The wedge product of any number of n-vectors can be defined by

continued multiplication. For example, if

c = e - e, + BeA,

d = 2el - 2e3 + eA,

then the wedge product of the vectors a,b, and c is

aAbac = - 9 ell\e2/\e3 + 21 elAeerA - 6611\631\84 - 21 e2/\e3/\e4

and the wedge product of the vectors a,b,c, and d is

aanbacad = '7561A62A63A64.
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The number 75 is the value of the determinant of the four vectors a,b,c,

and d, that is,

2 0] 1

> = 75.
-1 =2 o -

5 4 3

This connection between the determinant of four A-vectors and their
wedge product suggests the following theorem: An n Qx; n determinant

may be evaluated by forming the wedge product of the n column vectors.

0f course, the determinant may also be evaluated by forming the wedge
product of the row vectors. The proof of these theorems will be found

in [2].

The definition of the determinant by means of a wedge product is
not very useful for calculating the value of a determinant, but it is
useful in obtaining theoretical results about determinants. For example,
we shall use this definition to obtain Cramer's rule for the solution
of a system of linear equations. Suppose that al,az,...,an,b are given
n-vectors and that 51,52,...,€n are n unknowns to be found from the
system of equations

ga) + &8, tooct Ea =S b 7

Let us solve for El. Since the wedge product of a vector with itself
is gero, we may eliminate £, by multiplying equation (7) with a,
In this way we get

El alAa2 + 53 a3Aa2 R En anAa = baa
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Similarly, multiplying by a3,...,an will eliminate the other unknowns

and we find

£y ajAa, AvseA a = bAa, A--:A 2,
or
b coa
Elz a,;:.Z AA...AAzn,
1772 n

which is the well-known Cramer's formula.
Derivations

Given an n-dimensional linear space such as the space of n-component
vectors, we may form bivectors by taking the wedge product of two vectors,
trivectors by taking the wedge product of three vectors, and so on. We
shall say that the original elements of the space are elements of degree
one, bivectors are élements of degree two, trivectors are of degree three,
and so on until we get to elements of degree n. We may form the sum of

-elements of different degrees in a purely formal fashion thus:

+ -
3e e, Zeqhe, + 6elAe2Ae4.

Note that this sum cannot be simplified. Since we can also always form
the wedge product of any two elements of arbitrary degree, we have an

algebra called the exterior or Grassman algebra over the linear space.

An operator D which maps elements of the exterior algebra into

elements of the algebra is said to be a linear operator if

D(ax + By) = aDx + BDy,
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for any elements x and y of the algebra and any scalars a and 8.
If the operator D also has the property that it maps elements of degree
k into elements of degree k + v and if D behaves like a derivative

with respect to products, that is, if

D(xAy) = Dx)ay + (=) xa(Dy) (8)

for x an element of degree k, then D 1s called a derivation of degree
V. For example, in the space of three-dimensional vectors, if the vectors
are functions of the time t, then é%- is a derivation of degree zero.
Another example is given by the operator div or V- . This operator

is a derivation of degree minus one because it maps vectors which are of
degree one into scalars which are of degree zero. The product rule (8)

is also obeyed as can be seen from the well-known formula
Ve(axbd)=(Vxa)sb-a . (VxDb).

Notice that we have used here the vector product instead of the wedge

product. This is only possible in three-dimensional space.

We shall prove a result which will be useful to us in the next chapter.

Theorem. If D is a derivation of odd degree v, then D2 is a

derivation of degree 2v.

The proof is obtained by straightforward calculation. We have, by

definition,

D(xAy) = D)y + ()% xa(Dy)
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if x 1is an element of degree k. Then since Dx 1is an element of

degree k + v, we get

D2(xay) = (020 ay + (=) MV (D) aDy) + (DX LX) aDy) + (DX xa(D3)]

(%) ay + ()2 (%),

1l

2

( _) kv+v +

(%Y = 0 since v is odd. Thus D° satisfies

because
the product rule (8) and since it maps elements of degree k into

elements of degree k + 2v it is a derivation of degree 2v.

Two final remarks. First, it is sufficient to define a derivation
on elements of degree one because by the product rule (8) it can be
extended successively to elements of arbitrary degree. Second. no matter
what the degree of a derivation D 1is, if D is applied to a scalar, it
gives zero. This follows immediately from (8) if we put y = a, a scalar.

We find

D(ex) = oDx + (_)kv x A Da,
or

x A D(a) = 0,

for all a. Therefore, D(a) = O.
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Chapt:r II Topology of Networks
Introduction

This chapter will study the geometry of networks with no reference
to their electrical properties. We shall assume that the network is a
connected set containing b branches and n + 1 nodes. We shall assume
that each branch connects two nodes and that each node lies on at least

two branches (see Figure 1). Further we shall assume that each branch

Pl x»~ node

||II &+ branch
=]
i W' P

P,

)

Figure 1

carries a current and a voltage and finally we shall assume that these
currents and voltages satisfy Kirchoff's Laws, namely, the sum of the
currents at any node point is zero and the sum of the voltages in any
closed circuit is also zero. In this chapter we shall assume no relation-
ship between current and voltage. These relationships will be considered
in the next chapter where we will discuss the electrical properties of

networks.
Chains

Consider a network of b branches and of n + 1 nodes. In Figure 1,

we have an example of such a network with b =8, and n = 4. We shall
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name the nodes P ,P.,P_,...,P . The nodes will be called O-cells. A
0’"1°"2 n e

linear combination of O-cells such as

5P

0 - 6P1 + P, -P

2 4
will be called a O-chain. Later we shall give a physical interpretation
for O-chains. At present, a O-chain will be just a formal sum of the

symbols PO’Pl""’Pn' The set of all O-chains forms a linear space.

The branch Jjoining Pi and Pj will be denoted by Pin if the
branch is to be considered oriented in the direction from Pi to Pj'
Since the direction from Pj to Pi is the opposite of the direction

from Pi to Pj’ we shall write

Pin = -P.P (1)

-

In this way, an oriented branch may be considered an anti-commutative

product of nodes.

A branch will be called a 1-cell and a linear combination of l-cells
such as

+ 5P,PF

2P .P. - 6P2P1 4F3

01

will be called a l-chain. The set of all 1l-chains forms a linear space.
We shall assume that a chain contains only those l-cells which are

branches of the given network. Thus in Figure 1 no chain would contain
a l-cell such as POPB' If we want to emphasize that a l-chain contains

only branches of the network, we shall call it an admissable chain.

A closed circuit on a network will be called a 2-cell. Thus, in

Figure 1, P0P1P2’ PAPBPO’ POP2P3 are examples of 2-cells. ZFEach 2-cell
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will be considered orientated according to the order in which the points
are described. Thus POP1P2 is oriented clockwise and POPZPI is oriented

counter-clockwise. We shall write

POP1P2 = - POPZPl'

Notice that this equation is just what would be expected if the 2-cells
are considered as triple products of nodes with the products obeying the

anti-commutative law (1).

A linear combination of 2-cells such as 2POP1P2 - PAPBPO - 3F’0P2P3
will be called a 2-chain. It is convenient to restrict the concept of
2-cells to symbols containing three points only; consequently the circuit
P1P2P3PA in Figure 1 will not be considered as a 2-cell but as the 2-chain

P1P2P3 + PlPBPA' Because of the orientation of the 2-cells, the sum in

the 2-chain contains the common side PlP3 traversed twice, once in the
positive and once in the negative direction; consequently, the chain reduces
to the branches P1P2, P2P3, P3P4’ PAPl traversed in that order, thus

giving the circuit P1P2P3PA.

Boundary

We shall define an algebraic operator on the spaces of chains of all
dimensions. This operator will be called the boundary operator, because
when this operator is applied to cells it will produce the geometrical
boundary of the cell. We denote this operator by the symbol 8 and

we define its action as follows:

The operator 8 will be a derivation on the space of all chains.

When it is applied to a scalar, it gives zero as any derivation will.
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When @& 1is applied to a node, it gives one., If we now consider O-cells

as elements of degree one, l-cells as elements of degree two, and 2-cells

as elements of degree three, we may, by the remark at the end of Chapter I,
extend 8 as a derivation from O-cells first to l-cells and then to 2-cells.
In doing so, we shall use equation (8) of the preceding chapter and we

shall assume that & is a derivation of degree minus one.

Let us consider a(Pin). We have

6(Pin) = G(Pi)Pj = Pia(Pj) = Pj ~ P, (2)

We see that the boundary of ithe l-cell Pin is the O-chain Pj - Pi’
that is, the end point Pj counted positively and the initial point Pi
counted negatively. Note that the boundary of PjPi is Pi - Pj’ which

is the negative of the boundary of Pin.

Since 3 1is a linear operator, the boundary of a l-chain may be

found by applying 08 to each term in the chain. Thus

6(P1P2 + 2POP1) =P, ~ P + 2P1 - 2Py =P, + Py - 2Po.

Let us now consider the boundary of the 2-cell PinPk' Again using
(8) of the preceding chapter and (1) and (2) of this chapter, we find
that

a(PinPk) = G\Pi)Pij - Py a(Pij) = Pij - P,P,_+ Pin.
We see that the boundary of the 2-cell PinPk in Figure 2 is the l-chain

Pin + Pij - PiPk




19

that is, the branches that form the boundary of the 2-cell PinPk, each

I2q
i

K J

Figure 2

counted with a plus or minus sign according as the orientation of the

branch agrees or does not agree with the orientation of the 2-cell.

Again, since 8 1is a linear operator, the boundary of an arbitrary
2-chain may be found by applying @8 +to each term in the chain. Thus the

boundary of P1P2P3 + PlPBPA is

P1P2 + P2P3 - PlP3 Gty P1P3 + PBPA— PlPA = P1P2 + P2P3 + pBPA - PlPA'

Notice that this l-chain actually represents the geometrical boundary
of the circuit PlPZPBPA in Figure 1.

We shall now prove a fundamental topological fact, namely,

Theorem. The boundary of a boundary is zero.

For the proof, we use the theorem we proved at the end of the

preceding chapter. Since 9 1is a derivation of odd degree, 62 is a

derivation of degree minus two, but 82(Pi) = 3(1) = 0. Therefore,
when we use the remark at the end of Chapter I, we conclude that 62

extended to all chains gives zero.
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Current Chains

A chain may be interpreted as currents carried in the appropriate

cells. For example, a O-chain such as ZakP will describe currents

k

of magnitude ¢ flowing into the node Pk' We shall call such a chain

a node-current chain. A l-chain such as ZﬁijPin will describe currents
of magnitude Eij flowing along the branch Pin. We call such a chain

a branch-current chain. A 2-chain such as ZYijkPinPk will describe

currents of magnitude Yijk flowing in the circuit PinPk' We call

such a chain a loop-current chain.

Consider a branch current anP Tts boundary is aPk - an which

K

may be interpreted as a current of magnitude o going into the node Pk

and a current of magnitude o going out of the node Pj' Generalizing,

we see that the boundary of a branch-current chain is the node-current

chain which describes the total amount of current flowing into the nodes

because of the branch currents.

We can obtain a similar result for loop-current chains. The

boundary of a loop-current chain is the branch-current chain which

describes the currents flowing through the branches that form the sides

of the loop.

Suppose we have a branch-current chain which is the boundary of a
loop-current chain. Using the theorem about the boundary of a boundary
being zero, we find that the boundary of this branch-current chain must
be a node-current chain which is identically zero. This means that the
sum of the currents flowing into any node must be zero; consequently,

Kirchoff's Node Law is satisfied. Conversely, if the network is connected,
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Kirchoff's Node Law will imply that the branch-current chain is the
boundary of a loop-current chain. We shall state this result in the

following way: A branch-current chain must be a boundary l-chain.

Co-chains

To discuss voltages in the same way we have discussed currents, we
introduce the concept of a co-chain and a co-boundary. A k-co-chain
is a numerical-valued function defined on k-cells. For example, consider

the O-co-chain cO defined as follows: The value of cO

Pj j £ 2, 1is zero; the value of o for P2 is one. Note that this
3

co-chain may be extended linearly to be a function of chains; thus,

for any

cO(ZakPk) = o,
Similarly, a 1l-co-chain is a function defined on l-cells, and a
2-co-chain is a function defined on 2-cells. Again, these functions
may be extended linearly to be functions on chains. We shall say that
the value of a p-co-chain cp on a p-chain aP is the product of

the co-chain with the chain. For example, if the 1-co-chain ¢ has

1
the value aij on the l-cell Pin, and if the 1l-chain d1 is
1 .
ZBijPin then the product of cq and d~ is
1 _
e+ d7 = Jay By (3)

The co-boundary of a (p - 1)-co-chain Ch1 is the p-co-chain,

written 6cp_1, which is defined as follows:

bcp_l(PioPil... Pip) = cp_l[a(PioPil... Pip)]. (4)
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For example, the co-boundary of the O-co-chain defined previously is

the 1l-co-chain whose value on the 1l-cell Pij is zero if neither i

nor J 1is twoj; on the 1l-cell Pi 5 its value is 1; and on the l-cell
s ;
P2 j its value is - 1. Notice that the co-boundary is zero if P2
3
is not on the boundary of the 1l-cell, but it is + 1 if P2 is tne end

point of the 1l-cell and -1 if it is the origin of the 1l~cell.

We have proved that the boundary of a boundary is zero. Using this

result, we can prove the following dual theorem:

The co-boundary of a co-boundary is zero.

The proof is a simple consequence of (4). We have, for any p-chain

4%,
d cp_2 . d bcp_z ad cp_2 o d 0
2 . 2
because of the fact that &7 = 0. Since the value of ? cp_2 on any
p-chain is zero, we rmust have 620 = 0.

p-2

Voltage co-chains

Just as currents were defined by chains, so voltages will be defined
by co-chains. A O-co-chain will define the value of a potential at
each node; a 1l-co-chain will define a voltage in each branch; a 2-co-
chain will define a total voltage for a 2-cell. For example, consider

the O-co-chain which states that the potential at P, is 2, at P

0 1

- is 4, and at P2 is 5. We shall write this as
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Note that Py for k = 0,1,2 is actually the co-chain that has the
value 1 for Pk and the value zero for any other O-cell. Let us

consider the co-boundary of this co-chain. It is

2PgPy + 3PP, + PpP,e

Where pipj is the co-chain that has the value 1 for the 1-cell
Pin, the value - 1 for the 1-cell PjPi and the value zero for
any other 1l-cell. We see that the co-boundary of a node-potential

co-chain is the branch-voltege co-chain such that the voltage in each

branch is the difference of the node potentials at the ends of the branch.

A similar calculation will show that the co-boundary of a branch-
voltage co-chain is a loop-voltage co-chain such that the voltage in each
loop is the oriented sum of the voltages in the branches bounding the

loop.

Suppose we have a branch-voltage co-chain which is the co-boundary
of a node-potential co-chain. Since the co-boundary of a co-boundary
is zero, we see that the co-boundary of the branch-voltage co-chain
mst be zero. This result implies that the sum of the voltages in any
loop must be zero. Thus, Kirchoff's Circuit Law is satisfied. Conversely,
it can be shown that if the network is connected and if Kirchoff's Law
is satisfied, then the branch-voltage co-chain must be the co-boundary
of a node-potential co-chain. We shall state this result as follows:

The branch voltages must form a co-boundary co-chain.

Tellegen's Theorem

We shall prove an important theorem connecting the branch currents

and the branch voltages in an arbitrary network if Kirchoff's Laws are




satisfied. The theorem, first proved by Tellegen, is as follows:

Let I be a current vector, that is, let I be a b-component

vector such that each component represents the current in a particular

branch of the network. Let V be a voltage vector, that is, let V

be a b-component vector such that each component represents the voltage

in a branch. If Kirchoff's Laws are satisfied, then the scalar product

of I and V must be zero.

Notice that no relation between I and V is assumed. All that

is required is that the current and voltage vector each separately satisfy
Kirchoff's Laws. The proof of the theorem will follow easily from the
topological characterization of branch-currents and branch-voltages given
previously. To the vector V there corresponds a co-boundary 1l-co-chain
cq and to the vector I +there corresponds a boundary l-chain dl.

1

from (3) we see that the scalar product of I and V is equal to ey a.

is a co-boundafry, it may be written as dc. and since dl

Since ¢ 0

1
is a boundary, it may be written as 3d%. Now by (4),

2 2.2
600 « 84" = cy ° 874~ = 0,

because the boundary of a boundary is zero; therefore the theorem is

proved.

Tellegen's theorem can be generalized and written in an integral
form. Suppose we consider the behavior of a network as a function of
some parameter such as the time +t. For each value of t in some range
T there will be a current vector I(t) and a voltage vector V(t).

We shall prove the following:
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Integral Theorem

If I and V independently satisfy Kirchoff's Laws, then

The proof is an easy consequence of Tellegen's theorem. Since

I(t + h) and I(t) are both current vectors, we have
V(t)[I(t +n) - I(¢)] =0

for all values of t and h. Letting h go to zero, we find that
v(t)dI(t) =0

for all values of t. Approximating the integral in the theorem by a

sum, we finally obtain the result
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Chapter IIT Non-linear Networks

Relations between currents and voltages

In the preceding chapter we have considered the branch currents
and the branch voltages as completely independent entities, limited only
by Kirchoff's Laws. However, in any network the current in a branch is
related to the voltage in that branch by an electrical device such as a
resistor, an inductor, or a capacitator. Kirchoff's Laws together with
the electrical relations between the branch currents and the branch
voltages will give us a complete set of equations from which the elec-~

trical behavior of the network can be determined.

We begin by specifying the relation between the orientation of the
branch and the signs of the branch current and the branch voltage. If
the current through a branch is in the same direction as the orienta-
tion, the current will be called positive; otherwise, the current will
be called negative. The voltage across a branch will be equal to the
potential at the endpoint of the branch minus the potential at the
initial point of the branch. Since the current goes from a node of
higher potential to one of lower potential, our conventions about signs
will produce an extrg minus sign in the customary relations between
current and voltage. TFor example, consider Figure 1 in which the upper
node of the branch is at six volts potential above the potential of the
lower node and in which the resistance is two ohms. Of course, the
current through the branch is three amperes flowing downward. If the
branch is oriented downward, then the current is positive and the

voltage is negative. However, if the branch is oriented upward, then
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6 volts 20

|

Figure 1

the current is negative and the voliage is positive. 1In both cases,
the relation between the voltage v across the branch and the current

i through it is v = - Ri, where R 1is the resistance of the branch.

In addition to linear resistors, we shall also consider non-linear
resistors in which the relation between current and voltage is given
by the equation f£(i,v) = 0. This equation can be solved for either of
the variables i or v as a function of the other variable. We shall
not require that either of the resulting functions be single-valued
because we shall permit the characteristic of the resistor to have the

shape shown in Figure 2.

-1

Figure 2




The inductors and capacitors may also be non-linear. For an

inductor, the relation between current and voltage may have the form

ve=-11) §

1

where L(i) is a non-negative inductance. For a capacitator, the
relation between current and voltage may have the form

. av

i=-c(v) It

where C(v) is a non-negative capacitance.

Equilibrium equations

Let us consider again a connected network containing n + 1 nodes

and b Dbranches. A set of branches which 1s connected and contains no

closed loop is called a tree. A maximal tree is a tree which is not

contained in any other tree. It is easy to see that a maximal tree must
contain all the nodes; for, if a node did not belong to the tree, a
branch joining this node to the tree could be added without spoiling the
tree shape. It is also easy to see that a maximal tree must have exactly
n branches; for, starting with one fixed node, we must add one branch

for each node that is to be connected to this fixed node.

The network will have many maximal trees. Choose one such tree and
consider the b - n = L branches that do not belong to the tree. These
L Dbranches are called links of the tree. WNote that if any link is added

to a maximal tree the resulting network will have a loop in it.

From the definition of a tree it is clear physically that the




voltages in the n branches of a maximal tree can be chosen arbitrarily
because the tree has no loops. Then by adding each link in turn to the
tree and using Kirchoff's Circuit Law we may find the voltage in that
link. Since the network contains 1L 1links, this argument shows that

there are L independent loop equations.

Instead of starting with voltages, we may begin with currents. As
we add a link to the maximal tree, we may impress an arbitrary current
on it. It is clear that when all the links with their currents have
been added to the tree, the currents in the other n branches of the
tree can be determined. This argument implies that there are exactly
n independent mesh equations. Notice that so far we have not used the
electrical properties of the branches but have used only Kirchoff's

Laws.

Suppcse we pick a set of r { L branches whose currents we shall

call El,...,Er and a set of s < n branches whose voltages we shall

call ;r+l’°"’;r+s' We assume that no branch has both a current and

a voltage specified. We shall show that all the other currents and

voltages can be determined from these specified currents and voltages.
First, from Kirchoff's Laws we have L equations for the voltages and

n equations for the currents. Then, in the b-r-s branches for which
neither current nor voltage was specified, we use the electrical properties
of these branches to obtain b-r-s equations. Thus, we have a total of
L+n+b-r -s=2b-r-s equations to find the unspecified b-r currents

and the b-s voltages. Since the number of equations is equal to the

number of unspecified quantities, we assume that they can be solved to
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give equations of the form

(1)

<
1t
I
=
[y
<
—

Notice that in this discussion we have not used the electrical
properties of the branches in which either the current or the voltage
was specified. If we assume that the voltage in the r 1links is

related to the current by equations of the form

v = (1), 1< <r

and if we assume that the current in the s brénches is related to the

voltage by equations of the form

i(_,:fd(vc), r+l1<o<r+s

we obtain the following r + s equations from which the equilibrium

state of the network can be determined:

gp(ip) Gp(l,V), 1<p <,

(2)

£ (v) =7 (1,V), r+l1<o<r+s.

An example may clarify the argument. Consider the network in Figure 3

for which n = 2 and b = 4. Branches numbered 3 and 4 will form a maxi-

mal tree and branches 1 and 2 will be links for this tree. Let us assume

~

that the currents, 51 and i2 in branches 1 and 2 are specified and

also the voltage ;3 in branch 3. This implies that

’/.\ figure 3

3 4
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r=2 and s = 1. By the use of Kirchoff's Laws we find that the

currents in branches 3 and 4 are given by the equations i3 = El + 32,

iA = El + 32. Next, assuming that the electrical properties of the
unspecified branch 4 are such that the relation between current and
voltage is given by v = gA(i) we find that

v, =g,i) =¢g,(i; +1)
and

V] S Vy S -V, -V - vy - ga(ll + 12).
Thus. all the unspecified variables have been expressed in terms of the
specitied ones. Now, using the electrical properties of tne specified

branches, we finally obtain the following equilibrium equations for the

network:
gl(ll) = g2(12) S V3 - gL(il + i2)

f3(§3) =+ i, +1

In writing this set of equilibrium equations we have assumed that all
the branches were resistors. Suppose, however, that branches 1 and 2
were inductances and that branch 3 was a capacitor. Then the dynamical
equations for the network would be
S CE . .
LI gg = Ll g =+ va + g1y + 1),
d;B (3)
= CB(VB)?HT =1, +i,.

Notice that any set of currents and voltages can be specified, as
long as Kirchoff's Laws are not violated. The only reason for specifying

a particular set of currents and voltages is that we wish to write the

equilibrium equations of the network in terms of this particular set.
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Mixed Potential

A careful study of the dynamical equations for a network shows that
they can be written in a simple form. ror example, equations (3) may

be written as follows:

di dv

di
i l1_ 3p 7 2 _ Ap ap
MU= 5o LT = 5o - Ol g =
1 2 3
where S &
o . (11+12)
P = V3(11 1 é gA(l)dl.

We shall call the scalar function P the mixed potential of the network.

Consider again a network containing n + 1 nodes and b branches.
Suppose that the branches numbered 1,...,r are inductors and the branches
numvered r + l,...,s are capacitors. Just as in the preceding section,
we can specify the currents in the inductive branches and the voltages
in the capacitative branches. Again, we obtain the equations (1), namely,
S FH(E,;)

"

. (4)
v, = Ju(l,v) 1<uw <b.

The currents and voltages are functions of the time t. Let I’ be
a curve in the space of currents and voltages representing the variation

of these quantities. By the Integral Theorem of Chapter II, we have

b r r+s b
0=z §fvdi =(z+ = + = )§vdi
1 Bow 1 r+l r+s+l T N
(5)
r rts r+s
=y §vadai - 5 §idv + [ | Z §vail.
1T L r+1 I BB r+l “ A r+s+l Bow o
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Consider the two terms in the bracket on the right-hand side. Using (4)

for r+1p <s, we can express the sum in the bracket as a function

~
A

of the specified variables 1,; at the end of I' and at the beginning
of T'. For the integral term in the bracket, notice that the branches

involved are only the resistive ones in which vp depends only on iu.

(It is immaterial that the relation between ip and vu may not be

single-valued. The initial point of TI' determines a point on the curve

fu(ipvu) = 0 and we just integrate along that curve.) The point of the

argument is that a term such as

= §g (i )ai

v di
g -

depends only on the endpoint of I' and by (4) this is a function of the
specified variables only. OQur conclusion is that the bracket term in
(5) is a function P(i,v) of the specified variables only. We call this

function the mixed potential of the network.

We may then write (5) as follows:

g r+s -~
sf§fvdi - £ §idv + P(i,v) = 0. (6)
i B H o BOH

Since the variables i,v are independent, we see that (6) implies that

~ ol
=- =5 1<pgr
& CH
i = j¥iy r+l<pr+s.
K 6vu

But ;p’ 1 <p Lr, is the voltage across an inductor and EH’

r+1<p <s is the current across a capacitator. Using the
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electrical relations for these branches, we finally obtain the dynamical
equations of the network, namely

di

3 _E.: E_E_
)
dv ap
= Cu(vuyaﬁ? = 5;;, r+1<udr +s,
where
b r+s
P(i,v) = = §vdi + 5 iwv . (8)

ris¥1 T *OF r41 FHIp
For convenience, we have dropped the tilde signs.

The Mixed Potential for a Complete Set

The mixed potential can be given a particularly useful form in case
the r currents through the inductors and the s voltages through the
capacitators form a complete set of variables. This means they are a
set of currents and voltages which do not violate Kirchoff's Laws and
which are such that either the current or the voltage, or both, in every
branch is determined by Kirchoff's Laws only. For example, il’i2’ and
v

3

no matter what values they have, they do not violate Kirchoff's Laws

form a complete set of variables for the network in Figure 3 because,

because the current in the unspecified branch 4 is determined by Kirchoff's
Laws to be i, + i,.
Consider a network in which the specified variables form a complete

set. Let Nv be the set of branches of the network in which the voltages
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are specified by Kirchoff's Laws and let Ni be the complementary set
of branches, that is, those in which the current is specified by Kirchoff's
Laws. For example, in Figure 3, Nv would contain only the branch 3 and
Ni would contain branches 1,2, and 4. Using this decomposition of the
network, we may write (8) as follows:
r+S
Pi,v) =[ 2 + = ] §fvdi + = iv

pords  wres T P 12l
psNi ueNV

The second sum in the bracket can be integrated by parts to give

Pli,v) = = §fwvdi - = §fidv + = iv . (9)
p>r+s D HoH ports i p.eNv B RiIp
peNi p.eNv

Notice we have used the fact that the inductive branches belong to Ni
and the capacitative branches belong to Nv to simplify one of the sums

in (9).

The individual terms in (9) can be given an interesting physical

interpretation. The first term

"
rs‘vu o

is well-defined as a line integral over the curve connecting i and v

in the branch p. We call this integral the current potential of the

branch p. Similarly, the integral

§1iadv
nER

is called the voltage potential of the branch p. Note that in (9) the

current potential is evaluated only for branches in Ni and the voltage
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potential only for branches in Nv' Since the current is specified in
Ni and the voltage in Nv’ we see that

P(i,v) = 71) -G(v) + = iv

1
v

where F(i) 1is the current potential and G(v) is the voltage potential.
It can be shown that the third term on the right-hand side of (10) is
a bilinear function of the specified currents and voltages. For details

we refer to [1].

Example of the Calculation of the Mixed Potential

Consider again the network illustrated in rigure 3, but now we shall

specify its electrical properties as illustrated in Figure 4. The symbol

Flgure 4

in branch 3 indicates the presence of a non-linear resistor whose

characteristic will be assumed to be of the form v3 = - f(ij).

Since there is only one inductor and one capacitor in the network
of Figure 4, the appropriate variables to specify the dynamical behavior

of this system are 1 the current across the inductor, and VA’ the

2’




37

voltage across the capacitor. Note that 12 and v4 do not form a
complete set of variables because the use of Kirchoff's Laws alone without
the electrical properties of the network does not determine the value

of either ;3 or v3.

Nevertheless, even though the set of variables is not complete, a
mixed potential does exist and the dynamical equations for the network
in ®igure 4 can be written in the form (7). To see this, let us write
Kirchoff's Laws using the electrical properties of the network. It is

clear that 13 = - 1l - 12. We have

di,,

Ly 3% = 1Ry

Tt S £(1 +1,) + 1R : (11)
dv

4 o_ . L g
CAHt = o (111 12).

Since we have three equations for the three variables il’iZ’VA’ the

system is completely determined.

Notice that the second equation of the set (11) is not a differential
equation. This occurrence is a result of the fact that the set of

variables i2 and VA is not a complete set. We can of course eliminate

i, from the equations (11) and thus obtain a set of differential equations

1
only. To do this, we notice that the second equation of (11) may be

written

v, * iR = £(1 + 1) + (1 + 1Ry, (12)
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so that v, + i2R1 is a function of il + i,. Let us invert this

4 2
functional relationship to get i, + 12 as a function of v4 + iZRl

and let us write this new relation as
i+, = g(vA + 12R1).

Now eliminating il from the first and third equations of (11), we

get the desired result:

dV4
C, gt = - &lvy +izR)
(13)
di2
L2 =T = ng(VA + 12R1) - R112 .

The set of equations (13) may be written in the form (7) if we
introduce the mixed potential P defined as follows:
(VL+12R1) . i
g(v)dv - 5 Bis. (14)

jav}
"
O

Notice that the form (14) for the mixed potential is not in the form (10),
that is, it is not the sum of a term deperding only on the voltage plus

a term depending only on the current plus a term which is bilinear in

the current and the voltage. Instead, the first term on the right-hand

side of (14) is a complicated function of both the current and the voltage.

If we modify the network in Figure 4 so that it is the network
illustrated in Figure 5, we shall have an example of a network containing
a complete set of variables and we shall find a mixed potential of the

form (10). Since there are two inductors and one capacitor in Figure 5,

i‘

R
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Figure 5
the appropriate variables to specify the dynamical behavior are il’iz’
and VA’ and these variables form a complete set. Again, i3 = - il - i2,
and Kirchoff's Laws for this network become
di di
2 1 .
Ly3aw = 3¢ v 4l
di2
e =3 - (1 i
dv
4 _ . .
CA rraalis (11 + 12)J
di1
I v, - f(ll + 12) - 1Ry

Notice that the fourth equation of this set is implied by the first and
second equations. Considering the last three equations of this set, we
have a set of independent equations for the three variables il’i2’ and

v These equations are all differential equations which can be written

4
in the form (7) if we take

. ) (i1+12)
P=-2Ri) - é £(i)di + VA(11 + 12). (16)
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Equation (16) shows that P has the form (10) with the current

potential equal to
, (11+12)
R 1% - § f£(i)di,
171 0

=

no voltage potential term, and the remaining part being the bilinear
function VA(il + i2). The formula (16) can be written down immediately
from (10) without going through (15). From (9) and (10), ®(i) is
the current potential evaluated along the resistors in the branches in
which the current is defined by Kirchoff's Laws alone without the
electrical properties of the network. In Figure 5, the current is
defined in all the branches but since there are resistors only in
branches 1 and 3, we find

(il+12)

Rlii = é f£(i)di. (17)

F;
Pannt
[
~—
1l
1
-

The voltage potential G(v) mst be evaluated along the resistors in
the branches in which the voltage is defined by Kirchoff's Laws alone.
The only such branch is 4 and since this branch has no resistance, we

have G(v) = 0.

The remaining part of the mixed potential is defined in (9) as

T ivo, e (18)
pst

where the sum is tc¢ be taken over all branches in which Kirchoff's Laws
specify the voltage. Again, the only such branch is 4, and since the
current in this branch is - (i1 + i2) and the voltage is - v4 because

of the assigned orientation of the branch, we find that (18) equals




v

+ i2). Combining (17) and (18), we get

411

(il+i2)

_ 1. .2 P . B
P=-3Ri] - é £(i)di + v4(11 + 12),
in agreement with (16).

Vector Form for the Dynamical Equations

Consider a network with a complete set of variables ik""’i“’
Vi1 o Vst Denote this set of variables by the (r + s)-component
vector x. Let 1L denote the diagonal matrix whose entries are the
inductances Ll(i)"'°’Lr(i> and let C denote the diagonal matrix

whose entries are Cr+l(v)""’cr+s(v)' Put

-L 0

where the zeros denote rectangular matrices whose entries are all zero.
If a dot denotes differentiation with respect to time, we may write (7)

in the following vector form:

_J)’(:J——HPX (19)

9x ’

where gg- denotes the gradient of the function P.

Consider any solution of the equations (19). This solution is defined
by specifying x as a function of t; say, x = X(t). Note this speci-
fication defines a curve I'. Let us consider the way in which the mixed

potential varies along I'. We have

dB(X(t)) e ) = R s} B (20)
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The expression on the right-hand side of (20) is a quadratic form
in the vector X(t). Suppose that J 1is a positive-definite matrix,
then (20) shows that the value of the mixed potential always decreases
along any curve [I'. Considering the mixed potential as some kind of
"energy" of the network, we are led to believe that, because the "energy"
always decreases, the network must always be stable. This semi-intuitive
reasoning will be made precise in the next section where we discuss

Liapunov's Stability Theorem.

Liapunov Stability

Let x denote an n-component vector and let F(x) be a continuous
and differentiable vector-valued function of =x. Consider the vector

system of first-order equations
X = F(X) - (21)

The equilibrium points of this system are the points x in n-space E

n
at which #(x) = O. An invariant set of (21) is a set of points in E
such that if a solution of (21) starts in the invariant set at t = O,

then for all future time the solution remains in the invariant set. It

is clear that the equilibrium points of (21) form an invariant set.

Let V(X) be a scalar-valued function of x with continuous first
partial derivatives. Along any solution of (21) specified by x = X(t),

we have

QXL§%31_ = F(X(t)) *» grad V.
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Let us put

Wx) = f(x) + grad V(x),

so that

LK) = 4(x(w)). < (22)

Ir V(x) <0 and V(x) >0 for some region of En containing

the origin, then V(x) will be called a Liapunov function. We shall

prove the following [3]:

Theorem .. Let R

c denote the region around the origin in En

where V(x) < C. Suppose that RC is bounded and that inside R

C
V(x) >0 for x # 0, and ?(X) < 0. Let M be the largest invariant

set of (21) contained in the set of points for which V(x) = 0; then,

every solution of (21) which starts in RC at t=0 tends to M as

t goes to infinity.

To prove the theorem, we consider any solution X(t) of (21) which
is in RC at t = 0; therefore V(X(0)) < C. Because of (22) and the
conditions on V(x), the value of V along this sclution is non-increasing
for all t >0, and V(X(t)) <C for all t > 0; we conclude that the

solution X{(t) can never reach the boundary of R, at which V(x) =¢C

C
and therefore X(t) must remain in R Since V(X(t)) 4is non-increasing

and since V(x) > O for all points in R we see that V(X(t)) must

C’

converge to a limit, say C as t goes to infinity.

O’

Let L+ be the limiting set of X(t), that is, the set of points

p in En for which there exist an infinite sequence of positive times




tl,tz,..., such that X(tk) converges to p as k goes to infinity.
Note that the limiting set must be an invariant set of (21). For,
suppose L+ were not an invariant set. Then there would exist a solution

X(t) of (21) starting for t = 0 at a point P, in L, and such that
X(t) is not in L, for t>0 and t small enough. Since (x) 1is
continuously differentiable, it can be approximated for x in the neigh-
borhood of p, by F(po) + K ¢ (v = po) where K is a matrix with
constant entries; consequently, for x near enough to Py» the solutions
of

X = 7(X)

will be approximated by the solutions of
X=Fpy) + K+ (X -p,). (23)

However, for (23), it is easy to show that a solution such as X(t)
cannot exist and then, by continuity, it follows that ¥(t) does not

exist for (21). Therefore, L, is an invariant set.

From the preceding discussion about the limit of V(X(t)) as t

goes to infinity, it follows that V(x) = C for all x in L.

0
consequently, V=0 on L+. Also, the set L+ is in RC. Therefore,
if M is the largest invariant set contained in the set of points at

which VU = 0, then M contains L+, the limiting set of the solution

X(t) . This result proves the theorem.

It is useful to make a slight generalization of Theorem I as follows:
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Theorem II. Suppose for all x in E  that v(x) >0 for
x # 0 and that V(x) £ 0; suppose further that V(x) =+« as x = =

]

then every solution of (21) tends to the set M of Theorem I.

The proof follows easily from Theorem I. Consider any solution
X(t) of (21) and suppose that V(X(0)) = C'. By the hypothesis of the
theorem the set of points in E_ such that V(x) <C =¢C" + ¢, for
arbitrary € > 0, is bounded. ©Now, we can use Theorem I to complete the

proof.

Application to Networks

From equation (20), we see that P(x) will be a Liapunov function
if J 1is positive definite and then Theorem II could be applied to give a
stability theorem. In general, J 1s not positive definite and other
arguments must be used. We'shall conclude with a statement of a stability

theorem for some networks [1].

Notice that if J is a matrix and Pl(x) a scalar-valued function

1
such that the solutions of (19) satisfy
. aPl(x) 5
SRSt ol 2

then, because of linearity, the solutions of (19) satisfy all equations

of the form
~ s Gﬁ(x!
-J = =5 ,
X
where
J =aJ + BJl (25)
P

= aP + BPl
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with & and B arbitrary constants.

P, in (24) is the following:

A possible choice for Jl’ 1

1
Jy = PSJ, Py = 5gradP- S5 grad§ (2%)

where S is a symmetric matrix with arbitrary constants for entries.

To see this, start from (19), namely,
~JX=grad P,

and mltiply in front by the matrix Pxxs' We get
-J15(= - P8I X = P *SgradP

but notice that

il

1 . 1 .
> P S grad P + grad P SPXX

a
-a;(grad P+ S grad P) x 3

S

:Pxx - SgradP,

because S is symmetric. This justifies (26).

We now state a theorem about the stability of networks. For the

proof, we refer to [1,page 38].

Theorem ITT. Suppose

P(x) = - %(i,Ai) +B(v) +i * (yv - a),

where A is a constant symmetric matrix, <+ 1is an arbitrary constant

matrix, and a is a constant vector. Suppose A is positive definite,
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B(v) + |yv|] 2o as |[v]| > ®, and the norm of the matrix
1 -1 L
L2(1)A " vC 2(v)

is less than 1 - %, with & > 0, for all i,v; then, as t =+, all
the solutions of (19) tend to the equilibrium points, that is, the points

at which grad P = 0.

The idea of the proof is to find a suitable matrix S in (26)
and suitable a and B in (25) so that the conditions of Theorem II

are satisfied. The details are in [1].




(1]

(2]
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